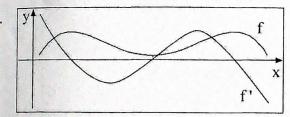
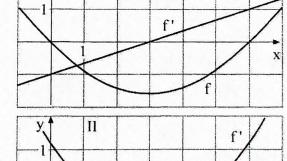

4. Die Ableitungsfunktion




c)

- 3. I a) f ist fallend für x < 3und steigend für x > 3.
 - b) Der Tiefpunkt liegt bei x = 3.

c)

I

- II a) f ist steigend für x < 1f ist fallend für 1 < x < 5f ist steigend für x > 5

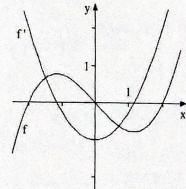
c)

- b) Der Hochpunkt liegt bei x = 1. Der Tiefpunkt liegt bei x = 5.
- 4. a) Nach 5 Minuten Aufstieg sind 1000m Höhe erreicht, dann geht es wieder abwärts. Nach weiteren 5 Minuten weiche Landung. Flugdauer: 10 min Gipfelhöhe: 1000 m

101 7. a)
$$f'(x) = -\frac{5}{x^6}$$
 b) $f'(x) = -\frac{12}{x^5}$ c) $f'(x) = \frac{2}{x^7}$

b)
$$f'(x) = -\frac{12}{x^5}$$

c)
$$f'(x) = \frac{2}{x^7}$$


d)
$$f'(x) = 1 + \frac{2}{x^3} - \frac{3}{x^4}$$

8. a)
$$f'(x) = -\frac{4}{x^3} = 0.5$$
, $x = -2$

b)
$$f'(x) = -\frac{4}{x^2} = -\frac{1}{9}$$
, $x = \pm 6$

b)
$$f'(x) = -\frac{4}{x^2} = -\frac{1}{9}$$
, $x = \pm 6$ c) $f'(x) = -\frac{12}{x^4} = -\frac{3}{4}$, $x = \pm 2$

103

 $10.I \rightarrow C$

 $II \rightarrow D$

 $III \rightarrow A IV \rightarrow B$

11.a)
$$f'(x) = \lim_{h \to 0} \frac{\frac{1}{2}(x+h)^2 - \frac{1}{2}x^2}{h} = \lim_{h \to 0} \frac{hx + \frac{1}{2}h^2}{h} = \lim_{h \to 0} (x + \frac{1}{2}h) = x$$

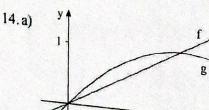
b)
$$f'(x) = \lim_{h \to 0} \frac{2(x+h)-1-(2x-1)}{h} = \lim_{h \to 0} \frac{2h}{h} = 2$$

c)
$$f'(x) = \lim_{h \to 0} \frac{(x+h)-(x+h)^2-(x-x^2)}{h} = \lim_{h \to 0} \frac{h-2hx-h^2}{h} = 1 - 2x$$

12.a) $f'(x) = x^3 - 4x$

b) f'(x) = -6x

c) $f(x) = 3x^2 - 12x + 12 + x$, f'(x) = 6x - 11


 $f'(x) = 3ax^2 + 2bx + c$ d)

e) $f'(x) = \frac{1}{\sqrt{x}}$

f) $f'(x) = \frac{-4}{x^2}$

13.a) f'(x) = x, f'(2) = 2 b) f'(x) = -2, f'(3) = -2 c) f'(x) = 4x - 2, f'(0) = -2

d) $f'(x) = \frac{1}{2\sqrt{x}}$, $f'(4) = \frac{1}{4}$ e) $f(x) = 2x + 4\sqrt{x} + 2$, $f'(x) = 2 + \frac{2}{\sqrt{x}}$, f'(1) = 4f) $f'(x) = 1 - \frac{1}{x^2}$, f'(1) = 0

b) f'(x) = 0.5, f'((1) = 0.5

$$g'(x) = -0.5x + 1$$
, $g'(1) = 0.5$

c) $m_f = 0.5$, $m_g = \frac{1-0}{2-0} = 0.5$

15.a)
$$f'(x) = x^3 - 6 = 2$$
, $x = 2$

b)
$$f'(x) = -0.5x^2 + 2x = -2.5$$
, $x = 5$ und $x = -1$

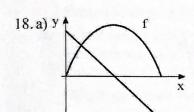
c)
$$f'(x) = -\frac{2}{x^2} - 1 = -3$$
, $x = \pm 1$

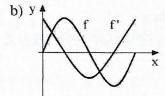
d)
$$f'(x) = \frac{3}{2\sqrt{x}} = 3$$
, $x = \frac{1}{4}$

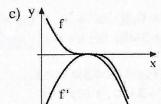
16.a)
$$f'(x) = g'(x)$$
: $x = 2$

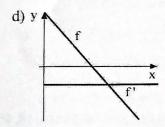
b)
$$x = \pm 1$$

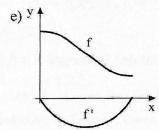
c)
$$x = \pm 3$$

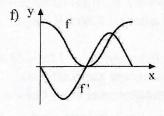

d)
$$x = 4$$


17.a)
$$(-4x^2)' = -8x$$
, $5' = 0$ b) $(x^{-1})' = -x^{-2}$


b)
$$(x^{-1})' = -x^{-1}$$


c)
$$(c^3)' = 0$$


d)
$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}, (\frac{1}{x})' = -\frac{1}{x^2}$$



19.a)
$$f'(x) = x$$
, $x = 1$

b)
$$f'(x) = \frac{1}{2\sqrt{x}} = \tan 30^\circ = \frac{1}{\sqrt{3}}, \quad x = \frac{3}{4}$$

c)
$$f'(x) = \frac{3}{\sqrt{x}} = \tan 60^{\circ} = \sqrt{3}, \quad x = 3$$

d)
$$f'(x) = -\frac{3}{x^2} = -1$$
, $x = \pm \sqrt{3} \approx \pm 1,73$

Knobelaufgabe

Vor einer Stunde hatte James x Centmünzen und y Euromünzen.

Danach hatte er noch y Centmünzen und x Euromünzen mit dem halben Wert.

xC + yE = 2(yC + xE), (2y - x)C + (2x - y)E = 0, mit 1E = 100C folgt

$$(2y - x)C + (2x - y)100C = 0$$
, $199x - 98y = 0$, d.h. $\frac{x}{y} = \frac{98}{199}$

199,98 Euro ist doppelt so viel wert wie 98 Euro und 199 Cent nämlich 99,99 Euro.