Lösungen A Knobelaufgaben, Zahlentheorie

A

1

- W3. a) 4. Treppenkörper: 16 Würfel 7. Treppenkörper: 49 Würfel
 - b) (1) Es liegen 21 Würfel übereinander. $(21^2=441)$
 - (2) Es bleiben 9 Würfel übrig.
 - c) (1) Es liegen 18 Würfel übereinander. (z. B. $(n+1)^2 = n^2 + 2n + 1 = n^2 + 35$, also n = 17)
 - (2) Er besteht aus 18²=324 Würfeln.
 - $V = a^3 \cdot n^2$

2

- W3. a) 18 Randsteine 12 Innensteine
 - b) Länge 6 Steine, Breite 14 Steine (oder umgekehrt), denn innen: Länge 4 Steine, Breite 12 Steine (oder umgekehrt)
 - c) Minimum bei 10 Innensteinen Länge, 10 Innensteinen Breite, also 44 Randsteine Maximum bei 100 Innensteinen Länge, 1 Innenstein Breite, also 206 Randsteine
 - d) (1) $(m-2) \cdot (n-2)$ alternativ: mn-2m-2n+4
 - (2) $2 \cdot (m+n) 4$ alternativ: $m \cdot n - (m-2) \cdot (n-2)$

Lösungen A Knobelaufgaben, Zahlentheorie

W4. a) 32 Wochen, denn $6 \frac{1}{100} \text{ km} \cdot 350 \text{ km} = 21 \text{ l}$ 21 l entsprechen 63 Punkten 2000 Punkte: 63 Punkte/Woche (≈ 31,75 Wochen)

- b) 124 € , denn $(2000 \text{ Punkte} - 20 \text{ Wochen} \cdot 63 \text{ Punkte/Woche}) = 740 \text{ Punkte}$ 740 Punkte : 6 Punkte/€ = 123 $\frac{1}{3}$ € alternativ: mit gerundetem Ergebnis aus a): 126 €, denn 12 Wochen · 63 Punkte/Woche = 756 Punkte 756 Punkte : 6 Punkte/€
- c) Pia sollte den Vorschlag ihres Vaters annehmen (mit Begründung), denn $40 \in$: (21 l/Woche · 0,13 €/l) ≈ 14,65 Wochen ≈ 15 Wochen, aber 15 Wochen · 21 l/Woche · 6 Punkte/l = 1890 Punkte (oder mit a): bei doppelter Punktzahl halbe Wochenzahl)
- d) $p = 33 \frac{1}{3}$, denn 2240 Punkte : (3 Punkte/l · 20 Wochen) = 37 $\frac{1}{3}$ l/Woche 350 $\frac{\text{km}}{\text{Woche}}$ · $\left(1 + \frac{p}{100}\right)$ · $\frac{61}{100 \, \text{km}}$ · $\left(1 + \frac{p}{100}\right)$ = 37 $\frac{1}{3}$ $\frac{1}{\text{Woche}}$ $\left(1 + \frac{p}{100}\right) \cdot \left(1 + \frac{p}{100}\right) = \frac{16}{9}$ 2240:20=112 $\frac{\frac{16}{9}}{\frac{16}{9}} = \left(\frac{4}{3}\right)^2 = \left(1 + \frac{p}{100}\right)^2$

- W4. a) (1) Angebot B ist günstiger, denn A: $0.19 \cdot 20 = 3.80$ B: $1 + 0.1 \cdot 20 = 3$
 - a) (2) Ab 12 Minuten ist Angebot B günstiger, von 0 bis 11 Minuten Angebot A, denn 0,19x=1+0,1x

W5. a) 773773

b)
$$N = 3 \cdot 3 \cdot 4 \cdot 3 = 3^3 \cdot 4 = 108$$

c)
$$N = 4 \cdot 3 \cdot 2 \cdot 1 \cdot 3 \cdot 2 = 4! \cdot 3! = 144$$

d)
$$N = 5 + 4 + 3 + 2 + 1 = \frac{6 \cdot 5}{2} = 15$$

e)
$$15 \cdot 3! \cdot 4! = 15 \cdot 144 = 2160$$

Lösungen A Knobelaufgaben, Zahlentheorie

W4. a) (1) Bislang fanden 5 Spiele statt.

(2)

	Siege	Unentschieden	Niederlagen
Chillies	1	1	0
Abräumer	1	1	1
Drachen	0	3	0
Bolzer	0	1	1

6

(Für die Drachen ist die Variante "ein Sieg, zwei Niederlagen" nicht möglich, da sonst die Anzahl der Unentschieden nicht durch 2 teilbar ist oder die Anzahl der Siege und Niederlagen nicht übereinstimmt.)

- b) Abräumer : Chillies 0:3 Abräumer : Drachen 0:0 Abräumer : Bolzer 1:0 Drachen : Chillies 1:1 Drachen : Bolzer 0:0
- Wenn das Spiel gegen die Chillies 4:1 endet, stehen sie auf Platz 1.
 (Die Bolzer haben dann 4 Punkte und 4:2 Tore, die Chillies hingegen zwer auch 4 Punkte.)

die Chillies hingegen zwar auch 4 Punkte, aber mit 5:5 Toren die niedrigere Tordifferenz.) Wenn das Spiel gegen die Chillies 3:2 endet, stehen sie auf Platz 2.

(Die Bolzer haben dann 4 Punkte und 3:3 Tore, die Chillies hingegen zwar auch 4 Punkte, aber mit 6:4 Toren die höhere Tordifferenz.)

NV 3.

- W3. a) 49 (LE)
 - b) (1) Zeichnung

Die Länge von D_6 ist 36 (LE).

- (2) Zeichnung Die Länge von D_3 ist 9 (LE).
- k = 8
- d) (1) $D_n = n + 2 \cdot (1 + 2 + ... + (n-1))$ alternativ:

$$D_n = 1 + 2 + \ldots + n + \ldots + 2 + 1$$
 oder $D_n = 2 \cdot (1 + 2 + \ldots + n) - n$

(2) vollständige Umformung:

$$D_n = n + 2 \cdot (1 + 2 + \dots + (n - 1)) = n + 2 \cdot \left(\frac{n \cdot (n - 1)}{2}\right)$$

$$D_n = n + n \cdot (n - 1)$$

$$D_n = n + n^2 - n$$

W3. a)

24 Plättchen

- b) a = 15
- c) (1) (12|2), (11|3), (9|5), (8|6)
 - (2) 81 Plättchen
 - (3) 900 Plättchen
- d) $n^2 + (n-1)^2$ (oder äquivalenter Term)